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SUMMARY 
Benchmark problems are solved with the steady incompressible Navier-Stokes equations discretized with 
a finite volume method in general curvilinear co-ordinates on a staggered grid. The problems solved are 
skewed driven cavity problems, recently proposed as non-orthogonal grid benchmark problems. The system 
of discretized equations is solved efficiently with a non-linear multigrid algorithm, in which a robust line 
smoother is implemented. Furthermore, another benchmark problem is introduced and solved in which 
a 90" change in grid line direction occurs. 
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1. INTRODUCTION 

In recent years several methods have been proposed for the discretization and the solution of the 
incompressible Navier-Stokes equations in arbitrarily shaped domains with a finite difference or 
a finite volume method. Most publications adopt a boundary-fitted curvilinear co-ordinate 
system. The discretization methods which employ curvilinear co-ordinate systems differ in grid 
arrangement (staggered or non-staggered grids), and in choice of velocity components (Cartesian 
or so-called grid-oriented velocity unknowns, such as contravariant components). A brief over- 
view of some important groups solving the incompressible Navier-Stokes equations is given here. 
A distinction is made between groups solving the incompressible Navier-Stokes equations in 
general co-ordinates on staggered and colocated grids and researchers using a pseudo-compress- 
ibility approach. First, investigations on colocated grids with Cartesian velocity components as 
dependent variables and transformed velocity components as independent variables are enu- 
merated. In Reference 1 this choice is made, where further a comparison is given between the 
several choices to be made to get accurate discretizations. The pioneering papers of the colocated 
approach are by Rhie et ~ 1 . ~ ~ ~  A lot of research on discretizations for non-staggered grids with 
Cartesian velocity unknowns is also presented in References 4-6, where the set of benchmark 
solutions discussed here is proposed for incompressible Navier-Stokes equations in non-ortho- 
gonal domains. Other papers based on the colocated approach are References 7 and 8 where 
results with advanced upwind schemes on colocated grids and fast solution methods are obtained. 
In Reference 9 non-staggered grids are adopted to investigate the effect of several upwind schemes 
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and turbulence models on the convergence of a multigrid solution technique for the incompress- 
ible Navier-Stokes equations. Some commercial codes have adopted colocated grids for solutions 
of complex flows in arbitarily shaped domains." A second group of researchers adopt pseudo- 
compressibility methods. With an artificial time-dependent pressure term in the continuity 
equation the incompressible Navier-Stokes equations can be approached with methods from 
compressible Navier-Stokes equations. All unknowns are also stored in the centres of grid cells; 
Cartesian velocity components and pressure are dependent variables. This method is, for 
example, adopted for discretizations in curvilinear co-ordinates by Kwak et al.' An advanced 
upwind scheme based on flux difference splitting is incorporated in Reference 12. 

Discretizations on staggered grids are also applied on a large scale. Interesting papers have 
been published by Rosenfeld et a1.,'3-15 where on a staggered grid contravariant fluxes V" and 
pressures are used as primary unknowns. Two- and three-dimensional results with moving grids 
and multigrid acceleration are described in these papers. In Japan, staggered grids are widely 
investigated in Reference 16 for two-dimensional and in Reference 17 for three-dimensional 
problems with dependent variables contravariant fluxes V" and contravariant vorticities. In 
Reference 18 contravariant physical components and pressure are used as unknowns. A similar 
approach using the same unknowns can be found in Reference 19. 

Some other papers will be mentioned briefly. An analysis of the treatment of a pressure 
equation on a curvilinear staggered grid is presented in Reference 20. In Reference 21 the stability 
problems on staggered grids with Cartesian velocity components are investigated and remedies 
are given. In Reference 22 the staggered approach is chosen for solving incompressible 
Navier-Stokes equations in curvilinear co-ordinates, because of the merits in boundary treat- 
ment, the compactness of effective mesh spacing, and the insensitivity of solutions with respect to 
the values of relaxation factors used in the iterative procedure. Approaches different from all 
others are described in Reference 23, where on a staggered grid covariant velocity components are 
used to solve the incompressible Navier-Stokes equations, and in Reference 24, where a rectangu- 
lar co-ordinate system is used with special treatment for the boundaries. In our group progress 
has been made with the discretization of the steady and unsteady incompressible Navier-Stokes 
equations in general co-ordinates using a finite volume method on a staggered grid.2S-z7 
Accurate results were obtained with Dirichlet boundary conditions28* z9 for the steady equations 
with a multigrid solution method and also for the unsteady equations using (semi-) natural 
boundary conditionsz6 with a pressure correction method and a GMRES solver. The incom- 
pressible Navier-Stokes equations were discretized on a staggered grid with contravariant fluxes 
V" and pressure as primary unknowns. 

Recently, two benchmark problems were proposed in Reference 6 for discretizations on 
non-orthogonal grids in two dimensions in order to compare different discretization methods. 
The Navier-Stokes equations were solved on a non-staggered grid with Cartesian velocity 
unknowns; the discretization is described in Reference 5. The solution method is a SIMPLE-type 
method.3093' Discretization in general co-ordinates on a staggered grid is a far from trivial 
matter, and may be very inaccurate, unless certain precautions are taken, discussed in References 
25 and 26. In order to validate our approach, in the present paper the benchmark problems of 
Reference 6 are solved with our steady variant. A steady-state multigrid solution method is used 
in which velocity and pressure are solved in a coupled technique by means of the Symmetric 
Coupled Alternating Lines (SCAL) smoothing method.32 Furthermore, a third benchmark 
problem is introduced and solved. In this problem a 90" change in grid line direction occurs, 
a situation which is difficult to handle with Cartesian velocity components as unknowns, and 
brings out the advantage of the co-ordinate-invariant approach of References 25 and 26 and the 
present paper. 
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2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN GENERAL 
CO-ORDINATES 

The fundamentals of tensor analysis, especially in relation to continuum mechanics, are presented 
in textbooks such as Arisj3 and S ~ k o l n i k o f f . ~ ~  The discretization is described in more detail in 
References 26, 29 and 35. 

In general co-ordinates the steady incompressible Navier-Stokes equations are given by 

where rub represents the deviatoric stress tensor given by 

7 =B = /A( gay u,$ + gyfl Up,). (3) 
Here U " are contravariant velocity components, p is density, p is pressure and p is the viscosity 
coefficient. Unknowns V"=,/g U" are used as primary unknowns together with the pressure. The 
arbitrarily shaped flow domain R is mapped onto a rectangular block G, resulting in boundary- 
fitted co-ordinates. The co-ordinate transformation is given by x =x(<), with x Cartesian 
co-ordinates and < boundary conforming curvilinear co-ordinates. The covariant derivative 
formula used for the continuity equation is 

Terms in the momentum equations of the type T,;fl are given by 

where ($} represents the Christoffel symbol of the second kind. 
The equations are discretized with a finite volume method on a uniform staggered grid in G. 

We introduce local cell co-ordinates given by Figure 1, which shows part of the computational 
grid in the <-plane. Taking a cell with centre at V'-point (1,O) as an example, finite volume 
discretization gives, using (5) 

0,2 2,'L 
I I I 

I I I 

I I I 

I I I 

-1,l - 0,l - 1, l  - 2,l - 3,l 

-l ,o 0 90 190 2,o 3,O 

-1;l - 0,-I - 1,-1 - 2;l - 3,-1 - - 

Figure 1 .  Local cell co-ordinates 
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The second component of (2) is similarly approximated with a cell centred at a Vz-point. With 
T,;p from (2) this is the discretization used for the momentum equations. It is found that the 
variable Va=JgU'  appears naturally in many places in (6). The convection tensor is linearized 
using a Picard iteration 

(pu" u q a  N ( p u a("+ 1) up'"') 4 7 (7) 
where the superscript n is an iteration index. 

The convection term is discretized with the so-called hybrid discretization scheme.30* 31 

Depending on the mesh Reynolds number Re('*j) (i.e. the ratio between the absolute magnitudes 
of the flux part of the convection term and the viscous term in point (i,j)), the flux part of the 
convection term is discretized with a central difference scheme (when Re(', j)< 1) or with a first- 
order upwind scheme (when Re('.j)> 1). There is a smooth switch between the two schemes using 
a smooth switching function o ( R e ( ' ~ J ~ ) .  

The total number of variables linked together in a momentum equation is 19. The discretized 
equations are solved with the standard non-linear multigrid method.36* 37 Details are presented in 
References 38 and 29. Here the smoothing method called SCAL32*35 is described briefly. 

All velocity components and pressures in a line of cells are updated simultaneously. This is 
a line-by-line version of the cell-by-cell smoother SCGS introduced in Reference 39, a so-called 
coupled smoothing method, because different unknowns (velocity components and pressure) are 
solved simultaneously. SCGS is used as smoothing method for discretizations in curvilinear 
co-ordinates in References 40 and 29. The smoother SCAL is much more robust than SCGS. 
Many problems in arbitrary domains, where cells with large aspect ratio occur have been solved 
successfully. 

For each line a banded system is solved and intermediate values ( V1*, V2*, p*)  are obtained. 
With underrelaxation the new values (V'("+l) ,  V2("+'), p("+')) are found. After an update of 
unknowns along horizontal lines, unknowns are updated again using vertical lines. SCAL is 
a zebra-type smoother: first all odd (white) lines are visited, then all even (black) lines are visited. 
With special ordering strategies acceleration can be obtained on vector computers. 

3. BENCHMARK SOLUTIONS 

In Reference 6 two benchmark problems are defined for discretizations on non-orthogonal grids. 
The flow problems are skewed-driven cavity problems. The domain, depicted in Figure 2, is 
a parallelogram with boundary length L =  1. Angle /.I is 45" for case 1, and 30" for case 2, so that 
highly non-orthogonal cells occur in the x-image of the grid. The top wall is moving with 
Cartesian velocity components u1 = 1, u2 =O.  On all other boundaries u = O  is prescribed. The flow 
problems are calculated for Reynolds numbers (Re) 100 and 1OOO. The discretization is investig- 

Figure 2. Domain for the skewed-driven cavity problem 



BENCHMARK SOLUTIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 305 

ated on four grids, consisting of 32 x 32, 64 x 64, 128 x 128 and 256 x 256 cells, respectively. 
The streamline patterns obtained agree closely with those in Reference 6. They are presented in 
Figure 3 for B = 45", in Figure 4 for B = 30". The prescribed streamline values in these figures are 
identical to those in Reference 6. The maximum and minimum values of the stream function 
Ymax and Ymin are determined for all grids together with their co-ordinates (xkin, xiin) and 
(xkax, x iax )  and an error measure E, defined as in Reference 6: 

Figure 3. Streamlines for Re= 100 and Re = loo0 for testcase I 

Figure 4. Streamlines for Re=100 and Re= loo0 for testcase 2 
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Table I. Minimum and maximum stream function values in vortex centres and their position for all grids 
and for both Reynolds numbers, skewed cavity, /3=45” 

p = 45” Re = 100 Re= lo00 
Min Max M in Max 

32 x 32 
Y 

Y 
64 x 64 
Y 

Y 
128 x 128 
Y 

Y 
256 x 256 
Y 

Y 

X 

X 

X 

X 

E 

-7 .0260~ lo-’ 
1.1 149 
0.5524 

-7.0266 x lo-’ 
1,1039 
0.5414 

- 7.0253 x lo-’ 
1.1094 
0.5496 

-7.0238 x lo-’ 
1.1 100 
0.5469 
00214 

5.6150 x 
0.3422 
0.1547 

4.1058 x 
0,3468 
01436 

3.7725 x 
0,3401 
01436 

3.6932 x 
0.3390 
0.1409 
2.1472 

-4.6914 x lo-’ 
1.2933 
0.5745 

-5.1778 x lo-’ 
1.3089 
0.5745 

- 5.3456 x lo-’ 
1.3089 
0.5745 

-5.3523 x lo-’ 
1.3128 
0.5745 
0,1252 

7.3515 x lo-’ 
0.7415 
0.3978 

8.6275 x 
0.7682 
04088 

14x~24 x lo-’ 
0.7783 
0.403 3 

1.0039~ lo-’ 
0.7775 
0.4005 
0.1494 

Table 11. Minimum and maximum stream function values in vortex centres and their position for all grids 
and for both Reynolds numbers, skewed cavity, p = 30” 

p=3O0 Re= 100 
Min Max 

Re= lo00 
Min Max 

32 x 32 
Y -5’3045 x lo-’ 1.5597 x -3.7309 x lo-’ 4.2221 x 
X 1.1808 0.5519 1.4537 0.8976 
Y 0.3750 0.1563 0.4063 0.2656 
64 x 64 
Y -5.3126 x lo-’ 7,4524 x - 3.8833 x lo-’ 4.4938 x 
X 1.1651 0.3750 1.4537 0-8997 
Y 0.5384 0.1484 0-4063 0-2578 
128 x 128 
Y -5.3152 x lo-’ 5.9527 x - 3.8698 x lo-’ 4.2446 x lo-’ 
X 1,1719 0.5316 1.4526 0.8997 
Y 0.3789 0.1445 0.4102 0.2578 
256 x 256 
Y -5‘3149 x lo-’ 5.6228 x - 3.8600 x lo-’ 4.1657 x lo-’ 
X 1.1680 0.5291 1.4565 0.9036 
Y 0.3789 01426 0.4 102 0.2559 
E 0~0060 5.8672 0.2539 1.8940 
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These values are presented in Table I for 8=45" and in Table I1 for p=30". Results agree well 
with Reference 6. The local error is less than 0.03 per cent of the maximum of the absolute values 
of Y over the domain for /?=45" and less than 0.1 per cent for 8=30". For Re= 100 the results on 
all grids are accurate. The values for the 128 x 128- and the 256 x 256-grid do not differ much for 
Re=1000. This indicates that the exact solution is closely approximated on these grids. This 
is also true for velocity profiles along the centrelines CL1 and CL2 (Figure 2). Figure 5(a) shows 
the Cartesian velocity component u1 along line CL1 for Re= 100, 8=45"; Figure 5(b) gives u2 
along CL2. Figure 6(a) shows u1 along line CL1 for Re=1000, 8=45"; Figure 6(b) presents u2 
along CL2. Figure 7(a) shows u1 along line CL1 for Re=1000, /3=30"; Figure 7(b) presents 
u2 along CL2. For Re= 100 all curves are identical; therefore, the velocity profiles for testcase 
2 are not shown. This indicates that we have an accurate solver; for a small number of unknowns 
accurate results are obtained for low Reynolds numbers. 

Again for Re= 1000 the finest two grids show identical results. On the other grids the effect of 
the upwind part of the hybrid difference scheme can be observed; differences can be seen mainly in 
the high-velocity regions. Due to these satisfactory results the discretization is called accurate; 
similar results were found when other benchmark problems in rectangular domains419 *' were 
solved. 

Next, the results for the multigrid solution method are presented for these testcases. Average 
reduction factors kinit are calculated, defined as 

with / I  - I /  the Euclidean norm, and res, the residual after n iterations. We also give 

In many cases v, is found to be approximately constant for n close to nit, in which case we have 
found the asymptotic convergence factor pL,zvnil. The number of MG iterations that were 
performed depended on the reduction factor pnil, as follows: 

O-15<pni,<0-3, n i t s20  (1 1) 

pnil > 0.3, nit 2 25, 

The multigrid cycle used is the F-cycle, because it showed reduction factors comparable to the 
W-cycle, while it is much cheaper than the W-cycle. The even cheaper V-cycle sometimes showed 
bad reduction factors for Re = 1000 on very fine grids. The number of pre-smoothing iterations 
and the number of post-smoothing iterations is 1. The coarsest grid always is the 2 x 2 grid, where 
10 smoothing iterations are performed. The number of multigrid levels differed for the different 
grids from 5 to 8. Table I11 presents pnil and vnit for testcases 1 and 2. The CPU times for one 
F-cycle on a Convex 3820 computer are presented in Table IV. No parallelization statements or 
special ordering strategies for vectorization purposes are implemented in the code. 

We introduce another benchmark problem, because the grids of testcases 1 and 2 mainly test 
the effect of non-orthogonality of co-ordinates. In order to also include the effect of curvature of 
co-ordinate lines (such testcases are also presented in Reference 6, but only for buoyancy driven 
flows), we propose the problem of flow in an L-shaped-driven cavity. This test problem is not only 
interesting for testing discretizations, but also for domain decomposition techniques, as used in 
Reference 43. The domain is depicted in Figure 8. It can be seen in Figure 8 that boundaries 
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Table 111. Average and asymptotic reduction factors for skewed-driven cavity problems 

Angle 8=45" p = 3 0  

Reynolds number 100 lo00 100 1000 

A,, "nit P"l1 V",I A l l  V",l A l l  V",l 

32 x 32 grid 0.191 0-221 0-617 0.695 0.304 0,373 0-629 0.674 
64 x 64 grid 0.184 0248 0.712 0.718 0336 0.412 0.533 0.589 

128 x 128 grid 0.198 0.253 0.718 0791 0.345 0.428 0.530 0.607 
256 x 256 grid 0.194 0.250 0.604 0.719 0.352 0.431 0.445 0.555 

Table IV. CPU times for an F-cycle on a Convex 3820 

Grid 32 x 32 64 x 64 128 x 128 256x256 512x512 

CPU times 1.34 s 4.67 s 17.4 s 75.2 s 350.0 s 

I .o 

I A 
I 1 

r 
2 

TI 
0.5 

Figure 8. The domain for an L-shaped cavity problem 

T2 and r4 consist of two parts. On the upper part of T2 u1 = 1, u2=0 is prescribed, on all other 
boundary parts we have u=O. The Reynolds numbers investigated are again 100 and 1000. If the 
grid is non-smooth, like the one shown in Figure 9, our discretization is not accurate for high 
Reynolds numbers (Re=1000). Figure 10 shows for this grid streamlines for Re=100 and 
Re= 1OOO. It can be seen that the non-smoothness of the 128 x 128 grid causes artificial non- 
smoothness in the streamlines near the kink in the grid lines for Re= 1OOO. Inaccuracy of the 
discretization on the grid of Figure 9 is to be expected with the method chosen due to the presence 
of Christoffel symbols, which involve second derivatives of the co-ordinate mapping. More 
smooth grids are needed, like the grid in Figure 1 1 ,  constructed with a biharmonic grid 
g e n e r a t ~ r . ~ ~ . ~ ~  A generating system of higher order, like the biharmonic grid generator allows 
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Figure 9. A non-smooth grid in an L-shaped channel 

Figure 10. Streamlines for Re= 100 and Re= loo0 for an L-shaped cavity with the grid of Figure 9, 128 x 128 cells 

Figure 1 1 .  A smooth grid, in an L-shaped channel obtained with a biharmonic grid generator 
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more boundary conditions. Co-ordinate line angles are specified to be orthogonal at the 
boundary. (With a Laplace grid generator we also obtained smooth grids.) Figures 12 and 13 
present streamlines and isobars for Re= 100 and Re= 1000, respectively. Local maximum and 
minimum values of the stream function Ymax and Ymin are presented for all grids together with 
their co-ordinates (xAin, xkin) and (xiaxr xiax) in Table V. From Figure 13 it can be seen that the 

1 -2.24013-03 

2 -4.28OE-03 

3 -8.5608-03 

4 -1.25OE-02 

S -2.010E-02 

6 -3.140802 

7 4.37013-02 

9 -7.42013-02 

8 -5.85013-02 

10 1.000829 

11 8.290E-05 

12 1.650E-05 

13 3.480G06 

Figure 12. Isobars and streamlines an L-shaped cavity for Re= 100 with the grid of Figure 11;  256 x 256 cells 

1 4.28oE-03 

2 -8.56OE-03 

3 -1.68013-02 

4 -2.710802 

5 -3.94013-02 

6 -5.37013-02 

7 -6.590G02 

8 -8.420~02 

9 1.00013-29 

10 8.290804 

1 1  1.650803 

12 3.480803 

13 5.250G03 

Figure 13. Isobars and streamlines for an L-shaped cavity for Re= loo0 with the grid of Figure 11;  256 x256 cells 
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Table V. Minimum and maximum stream function values in vortex centres and their position for all grids, 
L-shaped cavity, for both Reynolds numbers; grids similar to Figure 11 (for Re = 100 the finest grid consists 

of 256 x 256 cells.) 

L-Shape Re=  100 
Min Max 

32 x 32 
Y 

Y 
6 4 x 6 4  
Y 

Y 

128 x 128 
Y 

Y 

256 x 256 
Y 

Y 

512 x 512 
Y 

Y 

X 

X 

X 

X 

& 

X 

& 

-8.1183 x lo- ’  3.3308 x 
0-6737 0.75 18 
0.8 184 0.1720 

- 8.1073 x lo-’ 2.7953 x 
0.6679 0.7599 
0.8 134 0.1 747 

-8.0915 x lo-’ 2.6312 x 
0.6763 0.7643 
0.8092 0.1747 

-8.0859 x lo-’ 2.5814 x 
0.6734 0.7658 
0.8 127 0.1713 
0.0626 1.929 

Re= 1000 
Min Max (x1<0.5) 

-6.1571 x lo -*  4.3821 x 
0.7326 01904 
0.7326 06895 

-7-3215 x lo-’ 5.2854~ 
0.7026 0.1845 
0.7503 0.7289 

-8.3419 x l o - *  6.7005 x 
0.6983 0.1825 
0,7464 0.7525 

-8.5392 x lo-’ 6.2021 x 
0.6947 01819 
0.7488 0.7505 

-8.5425 x lo- ’  6.4022 x 
0.6938 0.1822 
0.7509 0.75 15 
0-0386 3- 126 

Max (x’ >03)  

3.5184 x lo- ’  
0.6589 
0.252 1 

63619 x lo-’ 
0.6604 
0.2886 

5.8084 x 
0.6855 
0.3009 

6.2503 x 
0.6877 
0.3069 

6.2712 x 
0.6868 
0.3089 
0.333 

flow at Re= lo00 has two stream function extrema, one for x1 <O-5 and one for x1 >0-5. Both are 
given in Table V. In order to judge accuracy as well as possible a 512 x 512 grid is needed for 
Re = 10oO. One should keep in mind that the moving part of boundary Tz is then discretized with 
256 cells, like in the first two testcases. The results obtained on the 256 x 256 grid and the 
512 x 512 grid are identical to a satisfactory extent. For Re= 100 the finest grid is a 256 x 256 grid. 
The error measure E is defined for the finest grid as in (8). 

Figure 14(a) shows the u1 velocity profile along line CL1 for Re= 100; Figure 14(b) gives the u2 
velocity profile along CL,. Figure 15(a) shows u1 along line CL1 for Re=1000, Figure 15(b) 
presents uz along CL2. The velocity profiles predicted on the finest grid are given in tabulated 
form in Table VI for Re= 100 and in Table VII for Re= 1000, in which 14 reference points for 
reproduction of the profiles are given. At (XI, x2) = (030.5) a singular point occurs. For Re = 1000 
it is inspected by giving, for all grids the pressure along the line x1 =0.5 and the pressure along the 
line x2 =05 in Figure 16. A large change in pressure, found to be similar on the three finest grids, 
can be observed at the singular point. 

Finally, Table VIII presents ,unit and vnit for the L-shape. Figure 17 presents the L,-norm of the 
residual versus the number of iterations for the L-shaped cavity for Re= 100 and Re= 1OOO. As 
expected the slopes of all lines in this figure are almost identical. This indicates the level- 
independent convergence rates of the multigrid method used. The average reduction factors for 
Re=100 are very good, only 15 iterations are needed to reduce the residual by 8 orders of 



=results, 256 x 256- grid. 

=results, 128 x 128- grid. 

- 2 
.... 

X 

=results, 64 x 64- grid. 4 
._._.._.... = I E S U ~ ~ ~ .  32 x 32- grid. - 

U1 

t 

-0.1 

-0.2 

-0.3 

-0.4 

- 

- 

- 

2 
u 

x '  

Figure 14. Velocity profiles for Re= 100 in the L-shaped cavity: (a) u1 along CL,; (b) u2 along 
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Table VI. Selected Cartesian components (u', u2) along lines CL1 and CL2 for an 
L-shaped cavity, Re= 100 

X' 

L-shape, Re = 100 
U' X2 I42 

1.391067 x lo-'  1.427423 x 
3.249394 x lo-' 
4.496036 x lo-' 
5.024952 x lo-'  
5.689500 x lo-' 
6.387627 x lo-'  
6.509587 x lo-' 
6.582105 x lo-' 
6.776128 x lo-' 
7-103055 x lo-' 
8-010405 x lo-' 
8441612 x lo-' 
9.043458 x lo-' 
9.524048 x lo-' 

-2'673955 x lo-' 
-9.856450 x lo-' 
- 1.467907 x lo-' 
-2.121597 x lo-' 
-2.584130 x lo-' 
-2.609123 x lo-' 
-2.613650 x lo-' 
-2-580779 x lo-' 
-2.364301 x lo-' 
-5.735737 x lo-' 

8.892393 x loT2  
3.615964 x lo-' 
6.458474 x lo-' 

4.999769 x 
9.866030 x 
1.403140 x lo-' 
2.924033 x lo-' 
4.691068 x lo-' 
5.298618 x lo-' 
6.011217 x lo-' 
7.020829 x lo-' 
8.846614 x lo-' 
8.926683 x lo-' 
9.004891 x lo-' 
9.252045 x lo-' 
9,501776 x lo-' 
9.841114~ lo-' 

9.035508 x 
1.299809 x lo-' 
1.379881 x lo-' 
1.215604 x lo-' 
1.387131 x lo-'  
1.280727 x lo-' 
8.317737 x lo-' 

-4.919975 x l o T 2  
-3.980422 x lo- '  
-3-995829 x lo-'  
- 3-975273 x 10- ' 
-3.641550 x lo-' 
-2.843395 x lo-'  
- 1.055517 x lo-'  

Table VII. Selected Cartesian components (u ' ,  u2) along lines CLl and CL2 for an 
L-shaped cavity, Re= lo00 

L-shape, Re= 100 
X' U' X2 U' 

1.008904 x lo-' 
1.012788 x lo-' 
3.083983 x lo-' 
3559005 x 10-1 
4.004040 x lo-' 
4.790068 x lo-' 
5.224505 x lo-' 
5.295923 x lo-' 
6.003576 x lo-' 
6.549982 x lo-' 
7-116315 x lo-' 
8.233341 x lo-' 
9-185696 x lo-' 
9.740718 x lo-' 

2.214952 x lo-' 
2.220298 x 

-3.958527 x 
-2.947157 x 
- 8.499573 x lo-' 
- 3.279580 x lo-' 
-4.280438 x lo-' 
-4'297859 x lo-' 
-3.051670 x lo-' 
- 1.944255 x lo-' 
-8.681319 x lo-' 

1.566785 x lo-' 
4-041500 x lo-' 
7.053604 x lo-' 

1.012788 x lo-' 
2.001027 x lo-' 
3.002279 x lo-' 
4.024018 x lo-' 
4.496036 x lo-' 
5.024953 x lo-' 
5.505747 x lo-' 
7Q01215 x lo-' 
9-380253 x lo-' 
9.481664 x lo-' 
9547680 x lo-' 
9.701669 x lo-' 
9-851 177 x lo-' 
9.950405 x lo-' 

-4.598057 x 
8.319043 x 
8.151612 x lo-' 
3.277335 x lo-' 
3.822040 x lo-' 
3.360547 x lo-' 
2.495101 x lo-' 

- 1.130681 x 
-6-011807~ lo-'  
-6.196227 x lo-' 
-6.092847 x lo- '  
-4-919449 x lo-' 
-2647262 x lo-' 
-8.754424 x 

Table VIII. Average and asymptotic reduction factors for an L-shaped cavity problem 
~~~ ~~~ 

Reynolds number 100 lo00 
k i t  Vnic k i t  Vnit 

32 x 32 grid 0-184 0.198 0.479 0-494 
64 x 64 grid 0.195 0.252 0-566 0.623 

128 x 128 grid 0.198 0.265 0.595 0.669 

512 x 512 grid 0.529 0.592 
256 x 256 grid 0.204 0.252 0.588 0.644 

- - 
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magnitude. Also for Re= 1000 the average reduction factors are satisfying. Due to the hybrid 
difference scheme they are not as good as the factors for lower Reynolds numbers, but they are 
level-independent. This means that almost the same number of iterations is needed to reduce 
a residual by several orders of magnitude for small and very large grids. The multigrid solver is 
also robust: all reduction factors are well below one. The smoother can deal with cells of varying 
size coming from a mesh generator. Furthermore, it is found that the code is insensitive to large 
variations of underrelaxation parameters for low Reynolds numbers, and that for the higher 
Reynolds number small variations are allowed. 

4. CONCLUSIONS 

The benchmark solutions show that our code is a reliable solver for the two-dimensional 
incompressible Navier-Stokes equations on sufficiently smooth non-orthogonal grids; the bench- 
mark solutions proposed in Reference 6 are solved with satisfying accuracy. For low Reynolds 
numbers very accurate results are obtained with a small number of grid points. For higher 
Reynolds numbers the effect of a hybrid discretization scheme can be observed for a small number 
of unknowns in the high-velocity regions. When larger grids (128 x 128) are used this effect is 
reduced. The flow in an L-shaped cavity is proposed as another interesting benchmark problem, 
and good results are obtained for this problem; velocity profiles and streamfunction values 
converge fast to accurate solutions. The multigrid solution algorithm is robust and efficient. For 
problems in different geometries similar reduction factors were obtained. The code is insensitive 
to small variations of underrelaxation parameters. 
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